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where S(x,$) is the Laplace transform of the function c&t), and which is given in the 
following form : 

S(x.$J) = J,” c-Ptc(x,t)dt (5) 

where $ is a complex variable. 
Let us consider a chromatographic system with a linear separation isotherm 

having the following characteristics: longitudinal diffusion occurs in the system, the 
mass transfer between the immobile and mobile phases is carried out at a finite 
velocity, and a chemical reaction of the first order takes place in the mobile, as well 
as the immobile phase under isothermal conditions. Neither the influence of pressure 
drop on the linear velocity, nor the influence of pressure on the diffusion coefficient is 
considered. The coefficient of longitudinal cliff usion and the coefkient of mass transport 
show a general dependence on the linear velocity of the carrier medium.These relations 
need not be specified in advance, as it is sufficient for them to be substituted into the 
final formulae. 

The system considered is described by the following set of equations: 

i3a 
- = K[ac - a] - x2a 
at 

(0) 

where c (short for C&J) ) is the volume concentration of the given component in the 
mobile phase relative to a unit volume in the mobile phase, a (short for n&J) ) is the 
volume concentration of the given component in the immobile phase relative to a 
unit volume of the bed, x is the position coordinate along the axis of the column, t 
is the time coordinate, u is the linear velocity of the carrier medium in the space 
between the solid particles of the bed, D (short for D(G) ) is the coefficient of longi- 
tudinal diffusion, I< (short for K(M) ) is the coefficient of mass transfer between the 
mobile and immobile phases, ~9 is the fraction of the cross-section which is not oc- 
cupied by the immobile phase, u is the slope of the separation isotherm, lcl is the rate 
constant of the chemical reaction in the mobile phase, x2 is the rate constant of the 
chemical reaction in the immobile phase. 

An example of such a system is a pulse reactor in which a chemical reaction of 
the first order is taking place, or a chromatographic system separating a compound 
which is subject to extinction through radioactive decay. 

The system is solved for two special types of boundary conditions: 

(1) G(#DQ = a(x,t) = 0 

c(x,t) = co(t) 
c(x,t) = u(x,t) = 0 

(II) c(x,t) = a(x,t) = 0 

c(x,t) = n(x,t) = 0 

c(x,t) = Q(X) 
a(x,t) = af(x) = 0 

forx= +m,tZo 

for x = 0, t Z 0 

%or 2 = o,o<.V< +a 

for x = -03, t z 0 

iorx= +cc,220 
for t = 0, --oc,<x<+m 
for i! = 0, -cOcx<+03 

(8) 

(9) 
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TYPE I BOUNDARY PROBLEM 

By introducing type I limiting conditions, the solution for the Laplace trans- 
form becomes : 

S = z&J) esp rz&. - JCZJ + 3. .q (20) 

where &(0(p) is the Laplace transform of the boundary condition c,(t). In this case it is 
convenient to use the terminology of the theory of continuous systemsl”. Thus 
S = v’ (~5) is the Laplace transform of the out-put quantity of the system v(t) ; &((p) = 

4(s) is the Laplace transform of the in-put quantity of the system, 14(t), and 

exp [S - J-&J + 5. .v] = qp> (21) 

is the transfer function, which is the Laplace transform of the weight function ix+), 
By the weight function of the system under investigation is meant the response of 
the system to the transmission of a unit impulse (Dirac’s delta function) to the in-put 
at t = o, while for t < o the system was undisturbed. 

The moments of the out-put quantity have been calculated up to the fourth 
order, inclusive, under the assumption that an arbitrary concentration impulse has 
been transmitted to the in-put of the chromatographic system, for which the fol- 
lowing is valid: zc(t) 1 o for o ,(_ 1! < co, and jz BC($) dt has a finite value. As: 

C(P) = z(p) * 7%(p) (22) 

it is possible to express the normal moment of the out-put quantity relative to the 
origin with the help of eqn. (4) by: 

$ ca4 *a/41 
(pnU)’ = (- 1)” linl __-__ = 

p * 0 Z(P) Gqp> 

Therefore, 

(fiTI.“)’ = ,$& (1) (PI,.+*‘) (WC”) 

(23) 

(24) 

For the first normal moment of the out-put quantity, the following results 
directly from eqn. (24) : 

(ccl")' = (P1'9 + (pt*? (25) 

Using eqns. (3), (24) and (25), the relation for the gz-th central moment of the 
out-put quantity follows : 

PnP = ,6& - (( ) Yi (-- 
‘Il.-- K 

Ilk t-k'") + (/a")']'" ' z. (2 'b-9 (pn-k-19' (rl'")') . (26) 
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In the case wvRnere tRne i&put cgummltity is Dirac’s function, the Laplace transform 
of the umft-puU gnanltiltp is equall Ito ttbe Itramsfet fmction, and 

(30) 

the fir& n~cmmal momenrt amI tie ceonW momelats, second to fourth order inclusive, 
can be described at a dliistarnce of L hmn the origin by the following relations: 

(32) 

2L K’ZL 
t-- 

r *w + nip 
(3.3) 

(34) 
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TYPE II BOUNDARY PROBLEM 

By using limiting conditions of type II, Laplace’s solution is generated: 

s = J ‘+cn Cl(E) zc(x - @) 
CXP ---- - + x-t I de (36) 

-CO 
20 

2n 1 

By introducing the initial condition, 

(37) 

where M, is the total amount of the compound introduced into the column, Q is the 

total cross-section of the bed and 8(x) is Dirac’s delta function, Laplace’s image of the 
solution takes the form: 

s = M 
@q 

(38) 

This equation differs from the earlier one found in KUCEIZA’S paper* in that W(J!J) 
has another form. The first normal moment and the central moments, second to 

fourth order inclusive, have again been calculated with the help of eqns. (4) and (3) 
for x = L. These moments ha& been 
Problem I : 

expressed in terms of the moments of Boundary 

2D rr’z, 
(Pl')II = ---$ 1 + -7-- 

( @(.rs + x2)2 ) 
+ (PIW)I' (39) 

SD2 
(pa)11 = - ( Ir’2, 2 wu 

1'4 
I _}_ -_- + 4D -.---- 

@(I( + x2)2 ) y2 cD(K + x2)3 
+ (Pa'")1 (40) 

G4D3 
(P3)II = - 

)( 

1.2X 
----- 

Y3 I 
---- 
cD(.f\' _t ) X2)3, + 

12D h'2, 

4 -- 
Y2 .--- aq.K + 

- + (p391. 
X2)4 

(41) 

(42) 
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DLSCUSSION 

The problem formulated above, includes the following special cases: 

(I) x1 = x2 = 0 

The expressions give the moments of the chromatographic curves, which agree 
with the moments calculated from the analytical solution given by LAPIDUS mm 

AMUXIWOX1. 

(2) xj, + 0, xg = 0 

The component, subject to chromatography, decreases through a first order reac- 
tion in the gaseous phase, It is either a question of monomolecular decay of the given 
component, or of a bimolecular reaction of the component, subject to chromato- 
graphy, with the carrier gas, which is in excess and, therefore, its concentration is 
unchanged. and is included in the velocity constant x1. 

(3) Xl z 0, x2 + o 
This case can be turned into the previous by the following transformation: 

K’ = I< + w2 (43) 

Ka 
a’= _- 

I< + x2 
(44) 

Xl’ 
a’ 

= Xl + - a42 
cli 

(45) 

The expressions for the moments show that in case (2) the rate of the chemical 
reaction influences the shape of the chromatographic curve only if D + o, whereas in 
case (3) the influence of the chemical reaction can be seen in the shape of the curve, 
even if D = o. The latter occurs according to the transformation (43-44)) given above. 

The coefficient of mass transfer includes such phenomena as, e.g. external 
diffusion, internal diffusion etc. The kinetics of heterogeneous catalytic reactions 
studied so far, were in most cases under conditions in which either the chemical 
reaction, or one of the mass transfer phenomena, was the rate determining process. 
It is expected that the method described above will enable some heterogeneous 
catalytic reactions of the first orcler to be studied, even in cases where the velocity 
of the chemical reaction and the velocity of mass transfer are comparable. The gener- 
ation of the zero to fourth moment of the out-put chromatographic curve in general 
allows five independent physical constants of the system to be found. 

Equations (27) allow for the moments of the weight function to be found, and 
in this way make feasible the use of eqns. (32-35) for measuring the physical constants 
of a given system even in cases, where a quantity of arbitrary form, fulfilling the 
conditions zc(t) > o for o =G t < co and j,“zc(t) dl has a finite value, is transmitted to 
the in-put of the system. It is thus sufficient to measure the shape of the in-put con- 
centration with a detector incorporated in the in-put of the column, and to find the 
moments with the help of the curves. In this way, it is also possible to evaluate 
experiments carried out by the frontal technique, whereby a rectangular .,impulse of 
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such length is transmitted into the system, as to enable the concentration at the 

out-put to attain a stationary state at least in a short time interval. 
The moments in both the boundary problems differ from each other in quantities 

of higher orders, which can be neglected in the case of a sufficiently long column, so 

2 
- 
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Fig. I. Dcpclldcxlce of A? 0x1 21. I) = I ; U1 = X2 = X; IC = I ; G? = I ; cli = 0.5. 
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that the form of the out-put quantity, even in case II, is practically determined by 
the moments of the weight function. 

By carrying out the operation ,“9%, the expression for jO”c(L,l) dt, i.e. the zero 
moment, can be generated in problem I, as well as problem II. In problem I, the areas 
under the curves c,,(Q and c(L,t) are measured, because the limiting process in this 
case leads to the expression: 

Jo . L Jo 

In the second. case 
measured in its infinitely 
the following is valid: 

(46) 

the total amount of matter Al,, applied to the column, is 
short section, as well as the area under the curve c(L,t), as 

____ I@ -- V)LJ 

J MO 
o c(LJ)dt = - 

exlJ t-zn-1 _---_-- 
@!I Y 

(47) 

For assessing the effectiveness, H, of a given. chromatographic system, the 
following formula is used5 : 

H=L$$ (48) 

By substituting the appropriate expressions for the moments of problem, I, 
into eqn. (4S), one gets the follo,wing equation : . 

(49) 

The dependence of the quantity H on the linear velocity of the carrier medium 2~ 
was calculated for ahypothetical case, in which D and IC are independent of the carrier 
medium velocity (cf. Figs. I 2). It 

ACKNOWLEDGEMENTS 

The author is indebted to Dr. OTTO GRUBNE,R for his encouragement and in- 
terest in this work. The valuable comments of Dr. I<. IkIRR are appreciated, Dr. 
DUBSICY controlled the results and assisted in some computations. 

SUMMARY 

A linear.. chromatographic system was solved, 
finite velocity of mass transport between mobile and 
reaction of the first order in both the phases under 

in which longitudinal diffusion, 
immobile phases and a chemical 
isothermal conditions, was con- 

sidered. The solution was presented as expressions for 
graphic curves, with the central moments calculated 
for two types of limiting conditions. 

the moments of the chromato- 
to the fourth order, inclusive, 
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It is expected that these expressions can be used in studying heterogeneous 
catalytic reactions in regions where the velocity of the chemical reaction is comparable 
to the velocity of mass transport. In addition, a method of obtaining constants from 
a s+zrn where an impulse of arbitrary shape has been introduced into the in-put, 
for both elution and frontal chromatographic techniques, was suggested. 
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