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REACTION OF THE FIRST ORDER

MILAN KOCIRIK
Institute of Physical Chemistry,«Czechoslovak. Hcadlonny gf Soivuoes, Preag e ((Caudiosilnudisie))
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The paper of LAPIDUS AND . AMUNDsoN sdhves tthe peadidlenm off s imeanr climomatio-
graphic system under conditionsof longitudiinall dlifiresion cmd@ wiithh sl estatblidimentt
of equilibrium between the mdbile:and immdbile plhases. Thdnr pugpen gives e fimmill
results in the form of functional relations, the pradtical appllicattiiom of wiiict 15 sonme—
what difficult. The present jpaperiis:an:attermpt tio sdlwe tis systterm im tihe presence: off an
chemical reaction of ithe ifirst order by mnomentt amnakysis, tihe appllicuttiom off tie lktten:
to chromatography was suggested by MoQuwrrue? and whed by Kopin®, IKetoma®,
GRUBNER AND KUCERA® and Virnme.

This method malkes use ©of statistical tnomentsT, tto dlexuilie the dnommattos
graphic curves ¢(x,?); in particular the ffirst mommal onomentt g, adl tbe cemtmall
moments uy are used. The w-th mormal statisticall meomentt iis detfned] by tlie equatiom:

J ® cendt

o’ = (o)
[+ ]
) cdt
Wi
The n-th central moment is €flefined :as:
J‘m c(t — u’yndi
pn = =2 (@

;“co cdy
i)
The n~th central moment can ibe caloulated firam the moeonmreull mormentiss witlh tie:

help of the expression:

& e
pan = 2 1) (— iV (@

The normal statistical mements :are melated tto tihe Liapllave tnansfionmm off tile:
function ¢(x,¢) by a relation lknown iin operater calouius®:

- «an
g )
wy' = (—a)r- ‘li)lil}) _S_(x—,71_)—_ (4
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460 M. KOCIR{K

where S(x,p) is the Laplace transform of the function ¢(x,#), and which is given in the
following form:

S(x,p) = f:’ e—ptc(x,t)d1 (5)

where p is a complex variable.

Let us consider a chromatographic system with a linear separation isotherm
having the following characteristics: longitudinal diffusion occurs in the system, the
mass transfer between the immobile and mobile phases is carried out at a finite
velocity, and a chemical reaction of the first order takes place in the mobile, as well
as the immobile phase under isothermal conditions. Neither the influence of pressure
drop on the linear velocity, nor the influence of pressure on the diffusion coefficient is
considered. The coefficient of longitudinal diffusion and the coefficient of mass transport
show a general dependence on the linear velocity of the carrier medium. These relations
need not be specified in advance, as it is sufficient for them to be substituted into the
final formulae.

The system considered is described by the following set of equations:

o2 oc 4 ec + 1
—_— == Y — JR— —
ox ot (4]

Eye Klac — a] 4 =ic (6)

da .

2 Kleee — a] — xea (7)
where ¢ (short for ¢(x,?)) is the volume concentration of the given component in the
mobile phase relative to a unit volume in the mobile phase, @ (short for a(x,?)) is the
volume concentration of the given component in the immobile phase relative to a
unit volume of the bed, x is the position coordinate along the axis of the column, ¢
is the time coordinate, # is the linear velocity of the carrier medium in the space
between the solid particles of the bed, D (short for D(#)) is the coefficient of longi-
tudinal diffusion, K (short for IK(u)) is the coefficient of mass transfer between the
mobile and immobile phases, @ is the fraction of the cross-section which is not oc-
cupied by the immobile phase, « is the slope of the separation isotherm, #, is the rate
constant of the chemical reaction in the mobile phase, », is the rate constant of the
chemical reaction in the immobile phase.

An example of such a system is a pulse reactor in which a chemical reaction of
the first order is taking place, or a chromatographic system separating a compound
which is subject to extinction through radioactive decay.

The system is solved for two special types of boundary conditions:

(I) e(#,8) = a(xt) = o forx = 4-o0,2=0

c(x,t) = cofl) forx = o, =0

c(x,t) = a(x,l) = o fort = o,o< ¥ < + (8)
(IT) c(x,2) = a(x?) = o forx = —o, 1= o0

c(x,t) = a(xt) = o forx = 4+, =0

c(x,t) = og(x) fort = o, —w0o < ¥ < 40

a(x,t) = ai(x) = o fort = o, — < ¥ < 4@ (9)
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LINEAR NON-BEQUILIBRIUN CHRONMATOGRAPHY 4.61

The Laplace tramsform of the function ¢(x.4), givem by eqm. (5), is denoted by S,
and the Laplace tramsform of the function a(s,4) by

Lia(xp)] = A(w,p) = A {zo)
BEquations (6) and (7) are thus tramsformed to:

d2S ds P S T . ,
P =/utm~§-p.‘5—,i——@MS———6£\\:ﬂ 4 S {rT)
pA = KuS — (K -+ sl (x2)

By excludimg A from the system of eqms. (11) and (12), ome has a similar
equation to the one foumd by LAPIDUS AND ANUNDSON!:

des wdS n W = o) (P K o) - Ka(p - oam) S — cy(2)

&= Dar D FTT -5 (x3)
By denotimng:
D(p - ) (P + K 4 222) 4+ Kz(p 4 =) N
D + K 2+ ao9) o
and
cy(x) P(x)
7 B

it is possible to transcribe eqn. (x3) into the followimg:

d2S 2 dlS w
e _ AT _Ye = ; 74,
dzt~ Ddr D P (14)

The general solution of eqn. (14) is givemn by®:

qpu P " qrolP(x
S = "Jf'% ™) g ““WJJ palP()

92 | 5 diw = Cygy - Cage (z5)

7

where C, and C, are constamts wihich can e determined from the boundary conditions,.
@y and @, are the so-called fundamental system of the solutiom of the appropriate
homogeneous equation:

qpr == (ea.*,;m qpg = @1.;!3 616)
and

Az =1 4/(7”2'5)) e (27)

are the roots of the characteristic equatiom:
; u—'—ﬂ,-—— == @ QIS)

W can be calculated with the help of the following equatiom:

| e ]

W=7
dqpa qpelt

(zo)
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TYPE I BOUNDARY PROBLEM

By introducing type I limiting conditions, the solution for the Lapldce trans-
form becomes:

-, Uy S )

S = &) exp |55 — ~/ 5 + 57 (z0)
where ¢y(p) is the Laplace transform of the boundary condition ¢y(#). In this case it is
convenient to use the terminology of the theory of continuous systemsi?. Thus
S = 7 (p) is the Laplace transform of the out-put quantity of the system v(¢); ¢4(p) =
i#(p) is the Laplace transform of the in-put quantity of the system, #(¢), and

o [i5 = () 5] = 2w e
is the transfer function, which is the Laplace transform of the weight function w/(?).
By the weight function of the system under investigation is meant the response of
the system to the transmission of a unit impulse (Dirac’s delta function) to the in-put
at { = o, while for ¢ < o the system was undisturbed.

The moments of the out-put quantity have been calculated up to the fourth
order, inclusive, under the assumption that an arbitrary concentration impulse has
been transmitted to the in-put of the chromatographic system, for which the fol-
lowing is valid: #(f) > o for 0 < ¢ << o0, and [ #(#) d! has a finite value. As:

V(p) = u(p)  W(p) (22)

it is possible to express the normal moment of the out-put quantity relative to the
origin with the help of eqn. (4) by:

danr - -
oty = (o tim B PR

p=0  T(p)-W(P)

N (”’) lim % 2) - lim e ()

_ k=0 \ A p:o dﬁj_’” p=0 dpk . (23)
w(p)-w(p)
Therefore,
’ e L 11’ U rd w ’

For the first normal moment of the out-put quantity, the following results
directly from eqn. (24):

(r1?)’ = (™)’ + (t)’ (25)
Using eqns. (3), (24) and (25), the relation for the n-th central moment of the
out-put quantity follows:
. n n—x&
ua® = Z(%) (= 08 Loy + o1 D) (o)’ ey} L (26)
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LINEAR NON-EQUILIBRIUM CHROMATOGRAPHY 463

By executing the indicated operations, and by rearranging the equations,
relations currently used in statistics are found?:

f12¥ = =™ - ™
p3® = p3® -4 g™ (27)
o = g - 6 paps* 4 paght

In the case where the in-put quantity is Dirac’s function, the Laplace transform
of the out-put quantity is equal to the transfer function, and

(12n™)" = (p2m™)" (28)
mn" = ey (29)

is valid. In agreement with eqn. (4) the following is valid for (u,%)’':

d~ ﬂe "y }\/ ( T )2 + w 1{]}
) @ 1P D zp) T D%l
(pen™)” = (— 1)* lim

P e 0% "/ ( P 2+ w 1;]
*P 2D 2D o

(30)
Denoting

i Ka 2
—_ w2 L o T TE
v / u® 4 4D (m i xz) (31)

the first normal moment and the central moments, second to fourth order inclusive,
can be described at a distance of L from the origin by the following relations:

. L , K2x
v’ = 2 (1 + G o) (32)
2DL K2x 2 2L K2L
e == (1 + G o)t T (33)
v 12D2L , K 3  12DL K32 2
lua®he = —3 (I T (K + xg))z) R (,I T SE F xg)a) (¢(K + x2)3) +
6L K2 (30)
U @K 4 e)d 34
tzoD“L IzD“’L" K% 4
(ea™)r = ( - ) ( DK + w22 )
1[44D-L 24DL K2 2/ K2
+ ( = ) ( T BE + xa)z) (qb(K + zg)a) -
24DL | IzL“' K2 2 48DL _ K2
+ ( s T e ) P + 362))3) e (I DE + uz)e)
K2z 24L K2x
DK + x=»4) v DK + x> (35)
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TYPE Il BOUNDARY PROBLEM

By using limiting conditions of type II, Laplace’s solution is generated:

_ (e e wp M9 [ m
=L e et G e e o

By introducing the initial condition,

Mo

ci(x) = -(3515(17) (37)

where M is the total amount of the compound introduced into the column, ¢ is the
total cross-section of the bed and §(x) is Dirac’s delta function, Laplace’s image of the
solution takes the form:

o o 22— () + 2]
P e [ 2

This equation differs from the earlier one found in Ku¢ERA’s paper? in that w(p)
has another form. The first normal moment and the central moments, second to
fourth order inclusive, have again been calculated with the help of eqns. (4) and (3)

for x = L. These moments have been expressed in terms of the moments of Boundary
Problem 1I:

(38)

K2q
DK + xa)

2D
(1)1 = —5 (I -+

- ) + )y (39)

oy = 82 (1 i Ko )2 4D K%
e = =g B+ )t 2 DK + %)

-+ (2%)1 (40)

(wa)1s = 64.D3 (I + 1 I( 2% )3 48.D2 (1 K2y ) ( F 2 )
Ha)L = T8 D (K + xg)2 ya B -+ w22 \ B £ mgs) T
12D (20

72 DK + x)

4+ (u3®)x. (41)

(a1 =

060.D4 96 D3L K2 4

o+ 55 )+ s )
7 7 PK T+ n2)
960 D3 144 D2L IK2q 2 K2

+ ( T T ) (I DK + ug)z) ((D(K + ug)S)
14402 48DL) ( K2 )2

+ ( rd + »3 D(K + 2¢)3

+ (32;%112) (I + d)(KI<-2: u2)2) (d)(I{-K—z: 22)4) +

48D K2 w
=B xS T ()1 (42)

o}
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DISCUSSION

The problem formulated above, includes the following special cases:

(I) Z] == "52 = 0
The expressions give the moments of the chromatographic curves, which agrec

with the moments calculated from the analytical solution given by LAPIDUS AND
AMUNDSON?,

(@) %y £ 0, %,= 0

The component, subject to chromatography, decreases through a first order reac-
tion in the gaseous phase. It is either a question of monomolecular decay of the given
component, or of a bimolecular reaction of the component, subject to chromato-

graphy, with the carrier gas, which is in excess and, therefore, its concentration is
unchanged and is included in the velocity constant s,.

(3) 21 % 0, %3 £ O
This case can be turned into the previous by the following transformation:

K = K 4 xus

(43)
K
o = e (44)
K 4 o
»1 = 31 -+ -E) o (45)

The expressions for the moments show that in case (2) the rate of the chemical
reaction influences the shape of the chromatographic curve only if D 3 o, whereas in
case (3) the influence of the chemical reaction can be seen in the shape of the curve,
even if D = o. The latter occurs according to the transformation (43—44), given above.

The coefficient of mass transfer includes such phenomena as, e.g. external
diffusion, internal diffusion etc. The kinetics of heterogeneous catalytic reactions
studied so far, were in most cases under conditions in which either the chemical
reaction, or one of the mass transfer phenomena, was the rate determining process.
It is expected that the method described above will enable some heterogeneous
catalytic reactions of the first order to be studied, even in cases where the velocity
of the chemical reaction and the velocity of mass transfer are comparable. The gener-
ation of the zero to fourth moment of the out-put chromatographic curve in general
allows five independent physical constants of the system to be found.

Equations (27) allow for the moments of the weight function to be found, and
in this way make feasible the use of eqns. (32—35) for measuring the physical constants
of a given system even in cases, where a quantity of arbitrary form, fulfilling the
conditions u(f) = o foro < ¢ < oo and [P#(¢) d! has a finite value, is transmitted to
the in-put of the system. It is thus sufficient to measure the shape of the in-put con-
centration with a detector incorporated in the in-put of the column, and to find the
moments with the help of the curves. In this way, it is also possible to evaluate
experiments carried out by the frontal technique, whereby a rectangular.impulse of

J. Chromatog., 30 (1967) 459—468



466 M. KOCIRIK

such length is transmitted into the system, as to enable the concentration at the
out-put to attain a stationary state at least in a short time interval.

The moments in both the boundary problems differ from each other in quantities
of higher orders, which can be neglected in the case of a sufficiently long column, so

H(cm)

T T T L

2 4 6 8 10 12
vlcm/sec)

Fig. 1. Dependence of Hoon u. D = 1,5, = 3 = 3 K = 1,00 = 1; P = 0.5.
811%¥=0 \
7
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—*"1000
[=E
€ o
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x
4-
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Fig. 2. Dependence of H on #. D = 1; 3%, = %, = %; K = 1; 00 = 10; @ = 0.5.
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that the form of the out-put quantity, even in case II, is practically determined by
the moments of the weight function.

By carrying out the operation "%, the expression for (e(L,®) di, i.e. the zero
moment, can be generated in problem I, as well as problem II. In problem I, the areas

under the curves ¢,(f) and ¢(L,) are measured, because the limiting process in this
case leads to the expression:

J;” c(Lt)dt = [ J:’ co(t)dt] exp [("—‘—2:;35)—1:] (46)

In the second case the total amount of matter M, applied to the column, is
measured in its infinitely short section, as well as the area under the curve ¢(L,t), as
the following is valid:

» exb [(u - 1/)],]
j. My °NF 2D

o c(L,t)dt = By ” (47)

For assessing the effectiveness, A, of a given chromatographic system, the
following formula is used?:

H =112 (48)

(p1)?

By substituting the appropriate expressions for the moments of problem 1
into eqn. (48), one gets the following equation:

2D DoulC2 (K A )
H == +er (DK + #2)? + K2a2 (49)

The dependence of the quantity H on the linear velocity of the carrier medium 1
was calculated for ahypothetical case, in which D and K are independent of the carrier
medium velocity (¢f. Figs. 1 and 2). It can be seen that the relation converges to the
course described by the van Deemter equation as the values of %, and #, decrease.
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SUMMARY

A linear.chromatographic system was solved, in which longitudinal diffusion,
finite velocity of mass transport between mobile and immobile phases and a chemical
reaction of the first order in both the phases under isothermal conditions, was con-
sidered. The solution was presented as expressions for the moments of the chromato-

graphic curves, with the central moments calculated to the fourth order, inclusive,
for two types of limiting conditions.
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468 M. KOCIRIK

It is expected that these expressions can be used in studying heterogeneous
catalytic reactions in regions where the velocity of the chemical reaction is comparable
to the velocity of mass transport. In addition, a method of obtaining constants from
a system where an impulse of arbitrary shape has been introduced into the in-put,
for both elution and frontal chromatographic techniques, was suggested.

REFERENCES

1 L. Laripus AND N. R, AMUNDSoON, J. Phvs. Chem., 56 (1952) 984.
2 A. D, McQUARRIE, J. Clem. Phys., 38 (1963) 437.
3 M. Kuglin, Collection Czech. Chem. Commuu., 30 (1965) 1104.
4 IE. XUCERA, J. Chromatog., 19 (19635) 237.
5 O. GRUBNER AND E. IXU¢ERA, in H. G. Strurre (Editor), Gas-Chromalographie 19635, Vortriige
des V, Symposiums iiber Gas-Chromatographic in Berlin, May 1965, Akademie Verlag, Berlin.
6 H. ViINK, J. Chromatog., 20 (1965) 305.
= H, CRAMER, Mathematical Methods of Statistics, Princeton University Press, Princeton, 1946.
8 G. DoxrTscH, Anleitunug sum praktischen Gebrawch der Laplace Traunsformation, Oldenbourg,
Miinchen, 1956.
o E. KaMKE, Differentiaigleichungen I, Akad. Verlagsgesellschaft Geest und Portig K.-G.,
Leipzig, 1951,
10 J. MATYAS, Metody vvetFovdni spojitych systémit a jejich optimdlini regulace, SNTL, Prague, 1963.

J. Chiromaltog., 30 (1967) 459—468



